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ABSTRACT

The problem of decision making in applied meteorology is approached from the point of view of decision
theory and subjectivist statistics. The modern concept of “utility” is discussed, and optional rules for decision
making based on the availability of a limited amount of meteorological data are presented and discussed.
Bayes’ theorem forms the basis for the statistical estimation of the frequencies of various alternative weather
events. The method is applied to a single example for the purpose of illustration, but it is emphasized that
the generality of these techniques is great and that they warrant further study.

1. Introduction

In any discussion of the role of weather prediction
in the decision making process, it must be kept clear
that there is a duality of roles. The meteorologist
analyzes and evaluates the present and past weather,
and estimates the future state of the weather; the
entrepreneur or other user of the meteorological service
must be able to evaluate these predictions and analyses
and translate them into the most favorable or most
desirable course of action. It has been pointed out
quite early that probabilistic forecasts are better suited
to economic decision making than are categorical
forecasts (Thompson, 1952). This is especially true in
the domain of public forecasts, or wherever there is no
close rapport between the meteorologist and the decision
maker. However, given a maximum of communication
between these two groups, as is becoming increasingly
common in many segments of the economy, much more
efficient use could be made of weather forecasts if their
stochastic aspects were to be appreciated more
adequately.

The basis for translating forecasts into optimum
decisions has been taken by numerous authors to be
the economic gain to be derived from particular com-
binations of actions and subsequent weather. For
example Thompson (1952), Thompson and Brier
(1955), Gringorten (1958, 1959), Borgman (1960),
Gleeson (1960), and Nelson and Winter (1960) have
all carried out analyses based on cost or profit matrices.
In all of these analyses, a single optimum strategy is
selected for any given current state of the weather (or
forecast), based on consideration of how to maximize
economic expectation, or in Gleeson’s analysis, on how

t Publication No. 54 from The Meteorological Laboratories,
The University of Michigan. .

to maximize minimum economic expectation. There
are two aspects of these analyses on which we shall
comment in this paper: the inadequacy of the cost or
profit matrix as the principal guide to choosing the
proper decision; and the manner in which our meteoro-
logical knowledge and experience have been utilized
in assessing the probabilities of the future states of the
weather.

The analysis which will follow is based very largely
on recent advances in the theory of decision making.
Numerous books have been written on the subject.
Luce and Raiffa (1957) offer a comprehensive and
critical review of the subject, while a relatively mathe-
matical, axiomatic treatment of the subject is available
in a recent book by Raiffa and Schlaifer (1961).
Another treatment of the subject, by Schlaifer (1959),
while simple mathematically, is quite penetrating
intellectually.

Many schemes have been devised to aid the decision
maker; some are applicable to situations involving
complete certainty of the outcome, some to complete
ignorance (a concept that not all authorities consider
meaningful), and some to partial ignorance of future
events. The first of these need not concern us insofar
as the future states of the weather are concerned ; nor,
I should hope, should the second. Gleeson’s Method B,
which employs the theory of games, is one of several
available techniques which fall in this second category.
The third situation, referred to as decision making
under risk, considers that one of several future events
may occur, each with specified probability. In order to
be applicable to the meteorological situation we must
apply this last case to situations in which the frequencies
of the various future states are to be estimated on the
basis of accumulated data.

In the following section we will consider the recom-
mended procedures for decision making under risk and
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also the Bernoulli-Ramsey (1931)~von Neumann-
Morgenstern (1947) concept of utility, which is an
integral part of decision theory. The third section will
deal with methods of computing the probabilities of
future states of the weather through application of
Bayes’ theorem [see, for example, Savage (1954) or
Miller (1961)]. We will then proceed 1o suggest several
methods for incorporating the probabilities of section
3 with the decision theory described in section 2.
Finally an example taken from the literature will be
used to illustrate the application of the methods
developed in this paper.

2. Decision making under risk, and utility

In this section I propose to discuss briefly, and in
very general terms, for those who may not already be
familiar with the subject, the basic concepts of utility
and decision making under risk. For those desiring a
more complete exposition of the subject, the treatments
by Luce and Raiffa (1957) and Savage (1954) are
recommended. Savage, in particular, offers an inform-
ative historical review of the concept of utility.

The subject of utility is adaptable to a careful and
axiomatic treatment; indeed Ramsey, and later von
Neumann and Morgenstern, give a proof of the exist-
ence of utility in the sense in which we shall use it.
The present treatment, however, shall be a heuristic
one.

Consider that you are given a choice between (i) an
outright grant of $1000 and (ii) a lottery in which you
would receive $10,000 with probability p or receive
nothing with probability 1—p. Certainly, if p is
sufficiently near zero, practically anyone would choose
(i) ; while for p sufficiently near one, almost all would
choose (ii). It is clear that for any individual there
exists some value of p, 0<p<1, such that he is com-
pletely indifferent between the two alternatives. If
this indifference occurs for p=pg, then we say that the
utility of $1,000,

U ($1,000) = polU ($10,000)+ (1— po) U ($0).

Note that a person who needs $1,000 (but no more)
for some particular purpose (say, an investment in a
“sure thing”) may prefer (i) even if p is as large as £.
Another person may be in the position that $1,000
would not be of very great personal value, but that
$10,000 would rescue him from severe difficulty (pay
a ransom, perhaps, to use an example due to Bernoulli) ;
he might very well be willing to accept the lottery (ii)
even if there were but one chance in fifty of receiving
the $10,000.

In this simple example, the utilities which are finally
assigned to the various alternative events are expres-
sions of an individual’s preference; different individuals
will have different preferences. (I, for one, have an
aversion to gambles and my personal point of in-
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difference would occur for some $o>0.1.) The actual
values of the utilities assigned to the alternatives are
arbitrary as to zero point and scale. Thus, if the
utilities of $0, $1,000, and $10,000 are taken to be U,
Ui, and Uy, respectively, then the triplet of utilities
aUo+b, aU14-b, and aU1o+b, ¢>0, would express the
very same preferences among alternative lotteries
involving only these three sums of money.

This general notion may be extended to the more
general situation in which an individual is offered a
choice among a set of lotteries, L;, each of which con-
sists of the same set of alternative prizes (not neces-
sarily cash) 4; (j=1, .-, #) but with probabilities

n
pi, 0<p;;<1, and 3. pi=1. By considerations such
=1

as those given above, the utilities of each of the alterna-
tives 4; can be determined in terms of the (arbitrary)
utilities of the most desirable and least desirable of the
Aj, assuming an element of consistency in the prefer-
ences. Then one can assign a utility to each of the
lotteries:

U(L,->=é U (A3),

where U(4;) is the utility of 4;. Then, if one selects
that lottery L; such that U(L)ZU(L;) for all j=i,
he is acting in consistency with his own preferences.

It is important to note here that no consideration is
given, or need be given, to repetitive trials or to an
outcome over the “long haul.” The significant point is
that the rational and consistent individual, when faced
with a choice from among alternatives, or lotteries of
alternatives of specified probability, will act as though
he were maximizing the expected value of his wiility? 1t
remains to be determined how one would act if only
estimates of the frequencies of the alternatives were
available, and how, especially in the meteorological
context of this paper, the available data would be used
to estimate these frequencies.

3. Bayes’ theorem and the estimation of the prob-
abilities of future states of the weather

The applicability of Bayes’ theorem to the problem
of meteorological forecasting has been recognized by
Nelson and Winter (1960) ; but to the author’s knowl-
edge, the only case in which it has been adequately
employed in this field is the study of Miller (1961).
Bayes’ theorem has appeared in texts on probability
theory [e.g., Feller (1950)] for many years, but only
since the rise of the “subjectivist’ school of statistics,
and especially the work of Savage (1954), and
Schlaifer (1959), has it been respectably applied to
problems of prediction.

We shall consider that the current state of the

2 According to Schlaifer (1959) this is “the practical way -of
choosing the ‘best’ act.”
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atmosphere has been categorized in a fashion such as
described by Gringorten (1955, 1958) and Gringorten,
Lund and Miller (1956), or, alternatively, that the
forecaster has issued one of a finite set of permissible
forecasts. This current state of the weather, or the
issuance of the particular forecast, we shall describe
as the condition S. In this manner we limit somewhat
the scope of the study from a conceptual point of view.
On the other hand, we are in no way limited to con-
sidering either “objective’” or “subjective” forecasting
procedures. In the past, the situation .S has been ob-
served to occur # times, and the subsequent states of
the weather have been recorded. From these records it
is possible to count the numbers of times (x;) that each
of the several mutually exclusive and exhaustive
weather categories (W,) of operational significance to
the decision maker has occurred. We assume that there
exist conditional probabilities of occurrence (p;) of each
of the W,, given that the situation S has prevailed
previously. The «; will then be samples drawn from a
multinomial distribution

n!

_.___..__plnpgrz. Y AL )

Fx|p)=
x1!x2!- - xk‘

Our initial knowledge of the values of the p; is
extremely limited, although we may have some a priori
judgments (the ‘“personal” probability discussed by
Savage (1954)) as to what may or may not be reason-
able values. Thus, we feel quite certain that the tem-
perature in December will not reach 100F in Fairbanks,
Alaska; we consider it not likely that more than 3
inches of precipitation will fall on Washington, D. C,,
on any given day. These notions may be expressed in
terms of &(p), the a priori joint probability density of
the ps.

What we seek, however, is not an a priors distribution
of the p’s, but it is rather the a posterior: probability
distribution. We want to know the probability that the
#’s have a particular set of values, given the available
information as to the events subsequent to # other
occurrences of .S. In other words, we wish to know the
probability density function f(p|S,%).3 According to
Bayes’ theorem, this probability density may be
written as

F (x| p)h(p)
f(plx)= .

H (x)

2

where F(x|p), the conditional probability density of x
given p (Eq 1), is proportional to the likelihood function

3 Following normal usage the vertical bar denotes a conditional
distribution of the term(s) preceding the bar, given the occurrence
of those following the bar. Throughout this paper, all distributions
are conditional on the occurrence of .S, and hereafter this condition
will be omitted from the notation. Thus %(p) implies the distri-
bution of the p’s given S, and f(x|p) the distribution of the «’s
given p and S.
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of p for x. The term H(x), the @ priori probability
density of x is

H(x)= f x| ph(p)dp

but the details of its evaluation need not concern us.
Note that H (x) is independent of .

Before proceeding with the development let me first
comment in general on the use of @ prior: distributions.
Although the formal use of a priori distributions has
not been widely recognized in the meteorological
literature, it is evident that they have been used on an
informal basis, indeed frequently without the user’s
awareness. Thus many studies of a statistical nature
have involved the editing of data before any statistics
are computed. This editing, or the elimination of data
which do not appear to be reasonable, is an implicit
manifestation of the a priori distribution of the
analyst. He has assigned a subjective @ priori proba-
bility of zero, to data points that fall outside of some
“acceptable” region.

As will be pointed out again later, the initial, or
a priori distribution is important where few additional
data are available. However given plentiful data, the
final impact of the initial distribution is vanishing
small. Indeed if one is given no data, or very few data,
how else is one to act except on the basis of the meteor-
ologist’s professional judgment—mamely his a prior:
distribution?

Given below are three plausible o prior: distri-
butions. They do not form an exhaustive set; there are
advantages and disadvantages to each.

Prior distribution I: Climatology. It would not seem
unreasonable to anticipate that the most likely values
of the p; should be near the climatological relative
frequencies of the weather events W,. If we let these
climatological relative frequencies be represented by

‘“(i a;=1), then an a priori distribution which ac-
corg)llishes this end is

T(k+1)
:F(a1+1)r(a2+1)- - T(ax+1)

h(p) P19pa%2 - - P (2)

The term involving the gamma functions is a
normalizing factor to meet the requirement that
Sh(p)dp=1. Eq (2) is plotted in Fig. 1 for the case
k=3 and a1=as=as=%. Note that there are always
k—1 independent p’s since 3 p,=1. The case k=3 is
chosen because it is the most complicated that can be
represented graphically.

Given this distribution, the a priori maximum
likelihood estimate of p; is a,. The effect of this distri-
bution is to weight the subsequent @ posteriori dis-
tribution toward the climatological mean. Yet this is
not a wholly satisfactory choice of a prior distribution
for it ignores the fact expressed earlier that the proba-
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bilities are conditional upon the occurrence of the
event S. The question arises as to whether it would be
reasonable to expect, on an @ prior: basis, the weather
subsequent to a particular kind of weather situation,
S, to be the same as that which we would expect
regardless of the initial conditions. The use of this
particular a priori distribution would seem to represent
a lack of faith in the method used for classifying the
present weather. On the other hand, one might recog-
nize that it is difficult to devise a classification scheme
under which the probabilities of the various subsequent
weather events will deviate very markedly from the
climatological means. In this sense perhaps Prior
Distribution I does represent a reasonable choice in
spite of its apparent disregard for the given condition S.
Prior distribution II: Forecaster’s confidence. The
point was raised above that Eq (2) does not take
account of any skill which the forecaster or analyst
may introduce into his categorization of the present
weather. A prior distribution which does accomplish
this is
B = (g i 3)
reF

where e is a small positive number which may be
interpreted as a measure of the degree of confidence
one places in the forecaster or forecast scheme. The
smaller e is, the greater is the implied confidence. Eq
(3) is plotted in Fig. 2 for the case =3, e=0.05. Note
that 4 (p) takes on its largest values (indicating greatest
a priori likelihood) when any of the p; are near 1, and
is smallest when the p; take on intermediate values.
Thus this distribution expresses the forecaster’s or
analyst’s intent and desire that the weather event §
which he has defined foretells the occurrence of just
one of the various alternative subsequent weather
events, although Eq (3) does not say which one, In
this sense it may be regarded as just the opposite to
Prior Distribution I, which in effect is saying that we
have no confidence in the meteorologist’s ability to
distinguish extreme or unusual conditions from the
climatological norm.

Whereas Prior Distribution I represents a surface
which is peaked somewhere in the middle of the per-
missible range of values of the probabilities, and Prior
Distribution II is peaked at the extremes of these
permissible ranges, the third prior distribution repre-
sents a compromise between these two extremes.

Prior distribution I11: M aximum entropy.

h(p)=const= (k—1)!=T'(k). 4)

This particular distribution may be thought of as a
minimal assumption [equivalent to the “principle of in-
sufficient reason” which may be suitable when one is
“completely ignorant” (Luce and Raiffa, 1957)7]. It
represents a maximum degree of uncertainty, or
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entropy, within the framework of information theory.
It may also be considered a compromise between Prior
Distributions I and II. However it must be pointed out
that there are certain logical inadequacies in the selec-
tion of this particular prior distribution. Consider the
trichotomous subdivision into clear, cloudy and rain.
Use of the uniform distribution (Eq 4) implies that
one’s a priori expected values (defined by S p.k(p)dp)
of the relative frequencies are § for each category. If
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F16. 1. Prior distribution I, Climatology, for the
case k=3, ax=as=a3=1%.
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F16. 2. Prior Distribution II, Forecaster’s Confidence,
for the case k=3, e=0.05.
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one then subdivided one of these categories, say cloudy
into partly cloudy and overcast, and retained the
uniform distribution over the four categories, one is
in effect reducing his judgment of the relative frequency
of clear skies and of rain to % for each.

In the example which will be presented in section 5,
each of these @ priori distributions will be employed
and the resulting @ posieriori distributions will be
shown. The reader will then be in a position to judge
the influences which these distributions have on the
final results.

4. Rules for decision making given stochastic esti-
mates of the probabilities of future events

We have seen, in section 2, that when the probabilities
of the several alternative future states are known, it is
consistent with one’s preferences to select that action
which maximizes the expected value of utility. However,
when we deal with a frequency distribution of these
probabilities the selection of the optimal action is less
clear.

In the discussion that follows we will assume that
the decision maker must choose among the decisions
D; (j=1,---,N), and that the subsequent weather
will fall into one and only one of the categories W;
(¢=1, -+ -, k). The result of making the decision D;,
when the subsequent weather falls into the category

k
W, has a utility given by Uy Then U(D))= 3 p.Uy;
i=1

is a random variable whose distribution is related to
that of the p;.

Listed below are three options, one of which the
decision maker may choose when he is operating in
this framework. Under some conditions each one will
lead to the selection of the same course of action; at
other times they could lead to two or three different
courses of action and then the final decision will have
to be based on consideration of the somewhat subtle
differences between the statistical implications of the
options.

Option I: Choose that course of action which maxi-
mizes the expected value of utility,

k
UDj=2 p:Ui.
=1
Option II: Choose thatl course of action for which
the maximum likelihood estimate of the utility is
maximum, i.e., maximize

k
UD)=% piUi;.
=1
Option III: Choose that course of action which
maximizes the probability that the decision will be
consistent with the decision maker’s preferences as
expressed by the utilities. To accomplish this one
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selects the decision which maximizes, for all ¢ j,
Prob{U(D)> V(D))= [ 7ol
T

where T; is that region of p-space such that U(D;)
>U(D;) foralli=1, ---, M, i#7].

One can see the differences between these three
options by referring to Fig. 3. Here we have plotted a
hypothetical surface f(p1,p2|%), and indicated the
regions of the two-dimensional p-space in which the
utilities corresponding to each of four possible decisions
is maximum. Point A is intended to locate the inter-
section of the expected values of p; and p.; point B is
the location of the joint maximum likelihood estimates,
p1 and ps.

Since point A is in I'y, Option I dictates the selection
of decision D;; since point B is in I'y, Option II dictates
the selection of decision Ds. Use of Option III requires
the selection of T'y, since the volume under the surface
S(p1,92]%) and over the region I'y is larger, apparently,
than that over any other region.

Some discussion of these options is certainly called
for here, but it should first be emphasized that some of
the distinctions among them are not yet completely
understood by the author and must be subjected to
further study. In the sense that the subjectivist
statistician would choose that decision which maxi-
mizes the expected value of utility, where the proba-
bilities involved in the various options are his personal
probabilities—i.e., the expected values of his a prior:
distribution—he would certainly act similarly given an

0.1—
V
.
0.8
1 os- /'
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4
A
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00 0.2 0.4 0.6 08 1.0
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F16. 3. Schematic a posteriori distribution of two probabilities,
showing regions of the p-space in which each of four decisions
yields maximum utility. Point A locates the expected values, and
point B the maximum likelihood estimates of p1 and pa.
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@ posterior: distribution, and select Option I. Indeed,
it would appear that one need not be a confirmed
subjectivist to come to the same conclusion. Given
reasonable a priori distributions and/or many data,
Option I will, in the long run, maximize the average
utility.

Option II apparently suffers from the inadequacy
that only a small portion of the final distribution
surface is of importance in determining the course of
action. Yet maximum likelihood estimators have
advantages, viz., sufficiency and efficiency [cf. Mood
(1950), pp. 158 fi], which may, in some manner not
clear to me, work to the advantage of the decision
maker. Also, as the data become increasingly plentiful,
the difference between the expected value and the
maximum likelihood estimate of a parameter becomes
negligible. Finally, it must be pointed out that if one
selects Eq (3) (Forecaster’s Confidence) as the a priori
distribution, then the a posieriori expected values, and
the maximum likelihood estimators considering only
the data and not the @ priori distribution, are almost
equal.

Option III, although initially attractive, is difficult
to justify logically. Would one choose a decision which,
in 99 cases out of 100, would provide some inconse-
quential improvement over another; while in the one
remaining case it would result in disaster? This is an
extreme, but the logical extreme, of Option IIL.

5. A specific application of the method

To demonstrate the method I will use an example
employed by Gleeson (1960). Although Gleeson’s
example is originally given in terms of a profit matrix,
I will assume, for the sake of argument, that within
the range of outcomes permitted by this matrix,
utility is a linear function of profit, so that the numbers
he gives may be interpreted as ‘“‘utiles.” Gleeson’s
example consists of four possible decisions (D1, Dy, Ds,
D,) the outcomes of which are dependent on which of
three possible subsequent weather events (Wy, W, W3)
occurs. Although Gleeson does not give values for the
x; (on the basis of which the a posteriori frequency
distributions of the probabilities (p1, s, p3) are to be
determined), he does give confidence limits on the
occurrences of the weather states. The x; may be
deduced from these. If it is assumed that the values
given represent 99 per cent confidence limits, reasonable
correspondence is obtained with #=23, x;=12, x,=4,
and x;=7. This information, along with Gleeson’s cost
(or our utility) matrix, are shown in Table 1.

Each of the three prior distributions presented in
section 3 will be used to determine a posterior: joint
distributions of 1 and p2 (pa=1—p1— p2). In the case
of Prior Distribution I, Climatology, we shall assume
that each of the categories is equally likely on a climato-
logical basis, i.e., ai=as=a;=3%. (See Fig. 1.)
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TasBLE 1. Gain matrix* and a posteriori expected values of the
probabilities of weather states.

W, W, Ws

Dy 4 1 -2
.. D. 1 2 0
Decisions Ds 1 2 3
Dy 0 0 0
Confidence 0.84 0.49 0.69
limits* 0.21 0.01 0.09
X 12 4 7

* After Gleeson (1960).

For Prior Distribution II, Forecaster’s Confidence,
the parameter e has been set equal 0.05. This prior
distribution is plotted in Fig. 2.

The three a posteriori joint distributions of p; and
pa, corresponding to the three prior distributions, are
plotted i Figs. 4, 5 and 6. The equations for these
distributions are, in Fig. 4, using Prior Distribution I,
Climatology :

T (27)
T (40/3)T'(16/3)I'(25/3)
XP137/3P213/3 (1 —Pl—f?z)”/s ; (5)

J(plx)=

in Fig. 5, using Prior Distribution II, Forecaster’s
Confidence:

I'(23.15) A
I'(12.05)T'(4.05)I' (7.05)
XP111.05P23.05(1__P1_p2)6‘05; (6)

J(plx)=

and in Fig. 6, using prior Distribution I1I, Maximum
Entropy:

I ) P<26 12 4(1 7 7
X)=——"——""—"" — 1 .
1 TA3TE)T (8)P1 2 P1—p2) Q)
Also shown on these graphs are those regions of the
triangular p-space where each of the individual decisions
dominate. The boundaries of those regions are deter-
mined by solving the six equations U(D1)=U(D,),
U(Dy)=U(Dy), etc. Note that there is no region in
which Dy maximizes utility ; this is because it is ‘“domi-
nated” (Gleeson, 1960) by D,. The decision D, will
then be considered no further, since there is never any
reason to select it in preference to Ds.

A comparison of Figs. 4, 5 and 6 illustrates quite
clearly the remarkable similarity between the @
posteriori distributions, in spite of the rather marked
differences among the ¢ priori distributions. Thus even
as few data as are used in this example are sufficient
to overcome differences among the various a priori
distributions. Indeed, it is concluded that with even a
reasonable number of data, almost any reasonable
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TF1c. 4. A posteriori distribution, using Prior Distribution I,
Climatology, for example described in text [see Eq (5)].
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Fic. 6. A posterior: distribution, using Prior Distribution III,
Maximum Entropy, for example described in text [see Eq

prior distribution would in general lead to equivalent
results. This emphasizes the point made earlier that
only in the case of no or very few data are the prior
distributions of very great significance.

The similarities among the several subsequent dis-
tributions may further be seen in Table 2, where the
expected values and maximum likelihood estimates of
the utility of the several pertinent decisions are shown
for each of the prior distributions. The probability that
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F16. 5. A posteriori distribution, using Prior Distribution IT,
Torecaster’s Confidence, for example described in text [see Eq
(6)]

TABLE 2. Expected values and maximum likelihood estimates of
utility for the several decisions and prior distributions.

Prior

distribution D, D» D;
I 7 156 089 083

U 162 088 0.76

11 J 165 087 074

U 1.74 085 0.65

I lZ 1.59 089 0.80
44 1.65 087 0.74
Prob{U(D;)>U(D;)} 0.813 0.187 0.00004

each decision will yield greater utility than any other
decision has been computed only for Prior Distribution
III, but it is evident from the graphs and from the other
numbers shown in Table 2, that similar results would
have been obtained for the other prior distributions.
Fig. 7 gives the cumulative a posteriori frequency
distributions of the utilities corresponding to the three
pertinent decisions, and for Prior Distribution IIT.

To assist in our analysis of these results let me first
briefly describe the conclusions pertaining to this
example which were reached by Gleeson. Using his
Method A, in which he considers the confidence limits,
and estimates for each decision the minimum expec-
tation by allowing the most unfavorable events to
occur to the limit of the confidence intervals, Gleeson
concludes that the best decision would be D,. This gives
a minimum expected profit of 0.32 unit, His Method B,
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CUMULATIVE PRQOBABILITY OF UTILITY

ob— | L
10 0 2

! 3
UTILITY

Fi6. 7. The cumulative @ posteriori frequencies of the utilities for
decisions Dy, Ds, and Dy, using Prior Distribution III.

in which he employs the Theory of Games, and assumes
that nature will always choose its best strategy, yields
the result that decisions [, and Dj; should be employed
in the ratio 6:4. This yields a minimum expectation
of 1.00 units, the “value’ of the game. By the methods
described by Nelson and Winter (1960) the decision
D, would be chosen, since this yields the largest ex-
pected value of gain.

The reason that D, is selected by Gleeson’s Method
A is apparent from Fig. 7. If this decision is made, the
probability of a very small gain is minimized ; gains less
than 0.5 would occur only about 1 time in 1,000. Note
that this is still larger than the minimum expected gain
for this decision by Gleeson’s method. The reason for
this is the extremely small probability of p; being near
the upper limit of its confidence interval (0.69) while
p1 is at the lower limit of its range (0.21), leaving
$2=0.10. (See Figs. 4-6). On the other hand the proba-
bility that a gain greater than 1.1 will occur using D,
is only about 3 per cent. Yet using D; the probability
of a gain exceeding 1.5 is 55 per cent, and there is still
about a 20 per cent probability of a gain greater than
2.0.

On the basis of Fig. 7, one would always choose D,
in preference to Dj; unless one feared the almost
infinitesimally small (~0.005 per cent) possibility of a
loss greater than 0.4. Yet by Gleeson’s Method B, D;
would be selected 40 per cent of the time. This is
because the theory of games presupposes that the

4 This statement is true even though the usages of the term
“expected value” differ between Nelson and Winter (1960) and
myself, In effect Nelson and Winter use x;/# as the expected value
of p;. In our examples, we determine $;= /3 p:J(p|x)dp.
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opponent (here, nature), upon ‘‘observing” one’s
strategy of always selecting Di, would change its
strategy and always select W3 (see Table 1). It would
hardly appear that this is an event to be feared.
Employing the options described in the previous
section, and returning to the utility concept, we find
(see Table 2) that all three lead to the selection of D,
as the optimum decision. In Figs. 4, 5 and 6, points A
and B both fall in the regions in which D, yields the
largest utility, and the probability associated with that
decision in Table 2 is also the largest. Thus, in this
example, D; provides the greatest expected value and
maximum likelihood estimate of utility, and also the
greatest probability of obtaining the maximum utility.

6. Summary and conclusions

The particular approach which one takes in reaching
decisions should vary with the nature of the problem.
I have attempted to describe a methodology which
appears to be eminently suitable to problems of applied
meteorology. From the point of view of the theory of
games, one might say that we assume our opponent
(nature) is unaware of the rules of the games (i.e.,
the system of awards, the utilities of the outcomes) but
has chosen a strategy nevertheless ‘and will adhere to
that strategy in the future. We do not know what his
strategy is, but must estimate that strategy on the
basis of his past performance. Also, since we are
confident that our opponent will not (or cannot) alter
his strategy when ours is put into effect, our “best”
strategy can take the form of a “pure” strategy. That
is, we may always make the same decision; we need
not keep our nonexistent opponent guessing.

It should also be evident that weather information,
plus the potential for profit or loss, is not in general
sufficient to determine what this ‘“‘best” strategy is.
Other considerations, such as the availability of working
capital, or the effect of any actions on one’s customers
or competitors, are allowed to influence the decision
through the use of the utility concept.

The use of Bayes’ Theorem to evaluate the frequency
distribution of the probabilities of future weather
events has applications much broader than those dis-
cussed in this paper. For example, there is nothing
implicit in the method which requires us to restrict it
to multinomial distributions and categorized subse-
quent weather events. Miller [1961] has employed it
to estimate the probabilities of subsequent weather as
an adjunct to multiple discriminant analysis. Further-
more, as additional data, beyond those employed in
the initial application of the method, become available,
the method may be applied again. In the additional
applications of the method, however, the a posteriori
distributions of the previous application become the
a priori distributions of the next application. Indeed,
as large amounts of data become available, the a prior:
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distribution of the very first application has ever
diminishing influence on the final distributions.

As a final note, suggestive of a possible direction for
further study, I would introduce the general problem
of forecast verification. Would not an optimum fore-
casting (or analysis) procedure provide maximum
discrimination among, not necessarily the types of
weather which may occur, but the utilities of the
decisions from which one must choose?
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